PROCEEDINGS

of the Union of Scientists - Ruse

Book 5 Mathematics, Informatics and Physics

Volume 13, 2016

RUSE

PROCEEDINGS OF THE UNION OF SCIENTISTS - RUSE

EDITORIAL BOARD

Editor in Chief Prof. Zlatojivka Zdravkova, PhD

Managing Editor Assoc. Prof. Tsetska Rashkova, PhD

Members

Assoc. Prof. Petar Rashkov, PhD Prof. Margarita Teodosieva, PhD Assoc. Prof. Nadezhda Nancheva, PhD

Print Design

Assist. Prof. Victoria Rashkova, PhD

Union of Scientists - Ruse

16, Konstantin Irechek Street 7000 Ruse BULGARIA Phone: (++359 82) 828 135, (++359 82) 841 634 E-mail: suruse@uni-ruse.bg web: suruse.uni-ruse.bg

Contacts with Editor

Phone: (++359 82) 888 738 E-mail: zzdravkova@uni-ruse.bg

PROCEEDINGS

of the Union of Scientists - Ruse

ISSN 1314-3077

The Ruse Branch of the	CONTENTS
Union of Scientists in	
Bulgaria was founded in 1956.	Mathematics
Its first Chairman was Prof.	mathematics
Stoyan Petrov. He was followed	
by Prof. Trifon Georgiev, Prof.	Diko M. Souroujon
Kolyo Vasilev, Prof. Georgi	Heteroclinic solutions on a second-order difference equation
Popov, Prof. Mityo Kanev,	
Assoc. Prof. Boris Borisov, Prof.	Nikolay Dimitrov16
Emil Marinov, Prof. Hristo	Multiple solutions for a nonlinear discrete fourth order
Beloev. The individual members	p-Laplacian equation
number nearly 300 recognized scientists from Ruse, organized	
in 13 scientific sections. There	Nikolay Dimitrov
are several collective members	Existence of solutions of second order nonlinear difference
too – organizations and	problems
companies from Ruse, known	
for their success in the field of	Veselina Evtimova
science and higher education,	Assessment of the characteristics of the system 'center for
or their applied research	emergency medical aid' for the provision of timely service to
activities. The activities of the	patients
Union of Scientists - Ruse are	
numerous: scientific,	Md Sharif Uddin, M. Nazrul Islam, Iliyana Raeva, Aminur
educational and other	Rahman Khan
humanitarian events directly	Efficiency of allocation table method for solving transportation
related to hot issues in the	maximization problem
development of Ruse region,	Tsetska Rashkova, Nadejda Danova49
including its infrastructure,	An application of the symmetric group in colouring objects
environment, history and future	
development; commitment to	
the development of the scientific organizations in Ruse, the	
professional development and	
growth of the scientists and the	Informatics
protection of their individual	informatics
rights.	
The Union of Scientists –	Olga Gorelik, Elena Malysheva, Katalina Grigorova55
Ruse (US – Ruse) organizes	Integrated model of educational process with elements of
publishing of scientific and	foreign educational programs
popular informative literature,	
and since 1998 - the	Galina Atanasova, Katalina Grigorova62
"Proceedings of the Union of	The place and the role of business processes generation in
Scientists- Ruse".	their life cycle
	Calina Atanagana Inanda Kanagaran
	Galina Atanasova, Ivaylo Kamenarov
BOOK 5	Business process generation opportunities
	Kamelia Shoylekova, Peter Sabev74
"MATHEMATICS,	Tools implementing integrated solutions to analysis and
INFORMATICS AND	transformations of business processes through Petri Nets
PHYSICS"	
	Vistoria Dachkova
VOLUME 13	Victoria Rashkova
	Possibilities and protection capabilities of social networks

M.	ATHEMATICS,	INFORMATICS	AND	PHYSICS
----	-------------	-------------	-----	---------

BOOK 5 "MATHEMATICS, INFORMATICS AND PHYSICS" VOLUME 13	 Valentin Velikov, Iliya Mutafov
	Physics Galina Krumova

web: suruse.uni-ruse.bg

EFFICIENCY OF ALLOCATION TABLE METHOD FOR SOLVING TRANSPORTATION MAXIMIZATION PROBLEM

Md Sharif Uddin^{1,2}, M. Nazrul Islam¹, Iliyana Raeva², Aminur Rahman Khan¹

¹Jahangirnagar University, ²Angel Kanchev University of Ruse

Abstract: A maximization transportation problem can be solved by the traditional transportation algorithms. In this paper, solution procedure for solving transportation maximization problems using the newly introduced Allocation Table Method has been illustrated. This study carried out to justify the efficiency of Allocation Table Method for solving maximization transportation problems. During this process, it is observed that the Allocation Table Method (ATM) is an efficient procedure for solving transportation maximization problems.

Key words: Allocation Cell Value, Allocation Table Method, Maximization Problem, Optimum Solution, Transportation problems.

INTRODUCTION

In general, Transportation Problem (TP) is known as a minimization problem as its objective is to schedule shipments of a single commodity from a number of sources to a number of destinations with minimal transportation cost. Transportation model is famous in Operations Research for its vast application in the various fields of real life. It can be formulated as a Linear Programming Problem, because of its special structure. The TP is originally introduced by Hitchcock [1] in 1941. Efficient methods of solution derived from the simplex algorithm were flourished, primarily by Dantzig [2] in1951 and then by Charnes, Cooper and Henderson [3] in 1953.

To describe the transportation problem, following notations are to be used:

- *m* Total number of sources/origins
- n Total number of destinations
- S_i Amount of supply at source i
- d_j Amount of demand at destination j
- c_{ij} Unit transportation cost from source *i* to destination *j*
- x_{ij} Amount to be shipped from source *i* to destination *j*

Using the above notations network representation of the transportation problems is shown in Fig. 1.

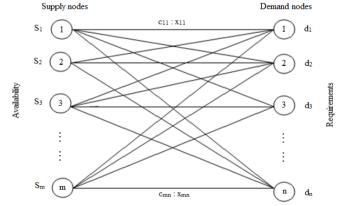
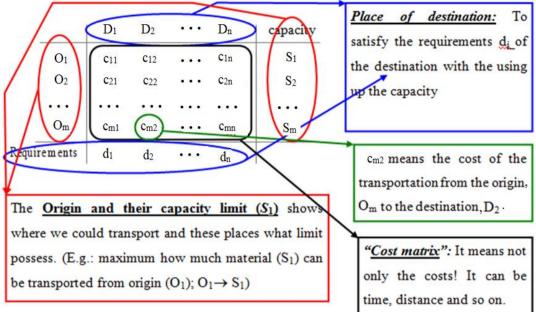



Fig. 1. Network Diagram for Transportation Problem

```
MATHEMATICS
```

The general and accepted form of the transportation problem is presented by the following scheme:

Fig. 2. Transportation Problem Scheme

The objective of the model is to determine the unknowns' x_{ij} that will minimize the total transportation cost while satisfying the supply and demand restrictions. Basing on this objective transportation can be formulated as:

Minimize:

$$z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
subject to : $\sum_{j=1}^{n} x_{ij} \le S_i$; $i=1,2,...,m$
 $\sum_{i=1}^{m} x_{ij} \ge d_j$; $j=1,2,...,n$
 $x_{ij} \ge 0$, for all i and j

Till now, several researchers studied extensively to solve cost minimizing transportation problems in various ways. The well reputed transportation algorithms like North West Corner Method (NWCM) [4], Least Cost Method (LCM) [4], Vogel's Approximation Method (VAM) [4] and Extremum Difference Method (EDM) [5] have been basically introduced in order to solve transportation problems.

Now-a-days, many researchers are developing new methods for solving cost minimization transportation problems [6-8]. Again these methods may be used to solve maximization transportation problems [9] and also time minimization transportation Problem [10]. The maximization problem can be converted into an equivalent minimization problem by multiplying the given profit matrix by -1. The converted problem can then be solved by any usual method. Finally, obtain the maximum profit by the relation Max $z = -{Min (-z)}$.

In this paper the newly introduced allocation table method (ATM) [8] has been studied to describe the procedure of this method in solving maximization transportation problems. The procedure has been elaborated and also been justified by solving a good number of numerical problems. During this progression it is observed that ATM is an efficient procedure for solving transportation problems.

41

ALLOCATION TABLE METHOD (ATM) FOR SOLVING THE TRANSPORTATION MAXIMIZATION PROBLEM

Recently developed ATM for solving cost minimizing transportation problems is illustrated below how it is to be used in case of solving transportation maximization problems.

• Step-1: Construct a Transportation Table (TT) from the given transportation problem.

• Step-2: Ensure whether the TP is balanced or not, if not, make it balanced.

• Step-3: Select Minimum Odd Cost (MOC) from all the cost cells of TT. If there is no odd cost in the cost cells of the TT, keep on dividing all the cost cells by 2 (two) till obtaining at least an odd cost in the cost cells.

• Step-4: Form a new table which is to be known as allocation table (AT) by keeping the MOC in the respective cost cell/cells as it was/were, and subtract selected MOC only from each of the odd cost valued cells of the TT. Now all the cell values are to be called as Allocation Cell Value (ACV) in AT.

• Step-5: Now identify the maximum ACV and allocate minimum of supply/demand at the place of selected ACV in the AT. In case of same ACVs, select the ACV where maximum allocation can be made. Again in case of same allocation in the ACVs, choose the maximum cost cell which is corresponding to the cost cells of TT formed in Step-1 (i.e. this maximum cost cell is to be found out from the TT which is constructed in Step 1). Again if the cost cells and the allocations are equal, in such case choose the nearer cell to the minimum of demand/supply which is to be allocated. Now if demand is satisfied delete the column and if it is supply delete the row.

• Step-6: Repeat Step 5 until the demand and supply are exhausted.

• Step-7: Now transfer this allocation to the original TT.

• Step-8: Finally calculate the total profit of the TT. This calculation is the sum of the product of cost and corresponding allocated value of the TT.

NUMERICAL ILLUSTRATION

Example 1.

Consider the following profit maximization transportation problem (Table 1).

Machines	F	Product	Capacity						
	P ₁	P ₂	P ₃	capacity					
M 1	10	15	12	50					
M ₂	6	9	20	30					
M ₃	21	13	7	20					
M ₄	23	2	25	60					
Demand	80	70	10						
Tal	Table 1. Data of Example 1.								

Solution of Example 1.

Formation of allocation table and allocation in the various cells for Example 1 is shown in Table 2 given below.

Machines		Capacity		
	P ₁ P ₂			- Party
\mathbf{M}_{1}	10	50 8	12	50
M ₂	6	20 2	10 20	30
M ₃	20 14	6	7	20
M_4	60 16	2	18	60
Demand	80	70	10	

Table 2. Allocation table and allocation in the various cells

Final allocation to obtain the maximum profit is shown in Table 3 after shifting the allocation to the original problem.

Machines				Capacity			
]	P ₁	F	2	P ₃		Capacity
M_1			50				50
		10		15		12	00
M ₂			20		10		30
1112		6		9		20	20
M ₃	20						20
1123		21		13		7	_0
M ₄	60						60
		23		2		25	
Demand		80	7	0	1	0	
Table 3. H	Final a	llocatio	on after	shifting	the all	ocation	n to original

• Finally, maximum profit according to allocation table method is, (50x15+20x9+10x20+20x21+60x23) = 2930

Example 2.

Four products are produced by three machines and their profit margins are given in the following Table 4. Find a suitable plan of production in machines so that the capacities and requirements are satisfied and the profit is maximized.

Machines		Proc	Capacity		
	P ₁	P ₂	P ₃	P ₄	Capacity
M ₁	16	14	11	25	140
M ₂	18	29	12	27	180
M ₃	14	23	16	12	70
Demand	60	100	150	80	

 Table 4. Data of Example 2.

Solution of Example 2.

Formation of allocation table and allocation in the various cells for Example 2 is shown in Table 5 given below.

Machines				Prod	ucts				Capacity
111111111	P ₁		P ₂		P ₃		P ₄		cupucity
M ₁					80		60		140
		16		14		11		14	1.0
M_2	60		100				20		180
1412		18		18		12		16	100
M ₃					70				70
1125		14		12		16		12	70
Demand	60 100 150 80		0						
Table 5	5. Allo	ocation	table	and	alloca	ation	in the	vario	us cells.

Final allocation to obtain the maximum profit is shown in the Table 6 after shifting the allocation to the original problem.

Machines				Produ	ıcts				Capacity
	I	P ₁		\mathbf{P}_2		P ₃		4	Capacity
M_1					80		60		140
1		16		14		11		25	210
M_2	60		100				20		180
1412		18		29		12		27	100
M ₃					70				70
1113		14		23		16		12	70
Demand	6	60	10)0	1	50	8	0	
Table 6. Fi	nal allo	ocation	after sh	ifting	the all	ocatior	n to the	giver	n problem.

• Finally, maximum profit according to allocation table method is, (80x11+60x25+60x18+100x29+20x27+70x16) = 8020

Example 3.

Consider the following profit maximization transportation problem (Table 7).

Machi-		Proc		Capaci-					
nes	P ₁	P ₂	tv						
\mathbf{M}_1	6	4	1	5	14				
M ₂	8	9	2	7	18				
M ₃	4	3	6	2	7				
Demand	6	6 10 15 8							
Table 7. Data of the Example 3.									

Solution of Example 3.

Formation of allocation table and allocation in the various cells for Example 3 is shown in Table 8 given below.

PROCEEDINGS OF THE UNION OF SCIENTISTS - RUSE VOL. 13 / 2016

```
MATHEMATICS
```

Machines			Capacity						
	P ₁		P ₂		P ₃		P4		capacity
					8		6		14
M_1		6		4		1		4	
M ₂	6		10				2		18
		8		8		2		6	10
M ₃					7				7
1123		4		2		6		2	,
Demand	6		1	10		15		8	
Table	8. Allo	ocation	table	e and a	alloca	ation	in the	variou	us cells.

Final allocation to obtain the maximum profit is shown in the Table 9 after shifting the allocation to the original given problem.

Machines				Prod	ucts				Capacity
	P ₁		P ₂		I	P ₃	P ₄		Capacity
M_1					8		6		14
1		6		4		1		5	
M_2	6		10				2		18
1112		8		9		2		7	10
M ₃					7				7
1115		4		3		6		2	
Demand	6)	1	0	1	5	8		
Table 9. Fin	nal allo	cation	after sł	nifting	the all	location	n to the	giver	n problem.

• Finally, maximum profit according to allocation table method is, (8x1+6x5+6x8+10x9+2x7+7x6) =232

Example 4.

Consider the following profit maximization transportation problem (Table 10).

Machines			Capacity						
	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆	eapacity		
M ₁	35	41	28	16	20	12	320		
M ₂	14	21	28	30	15	24	180		
M ₃	45	18	17	29	26	19	200		
M_4	21	23	16	11	22	20	300		
M ₅	41	16	15	17	21	28	300		
Demand	225	225	200	200	275	175			
Table 10. Data of Example 4.									

Solution of Example 4.

Formation of allocation table and allocation in the various cells for Example-4 is shown in Table 11 given below.

Ma-	Products										Capacity		
chines	P	1	P ₂		P ₃		P ₄		P ₅		P ₆		
M_1			225		95								320
TATI		24		30		28		16		20		12	020
M ₂							180						180
1112		14		10		28		30		4		24	100
M ₃	200												200
1413		34		18		6		18		26		8	200
M ₄					25				275				300
1414		10		12		16		11		22		20	500
M ₅	25				80		20				175		300
1015		30		16		4		6		10		28	500
Demand	225 225		200		200		275		175				
Table 11. Allocation table and allocation in the various cells.										lls.			

The final allocation to obtain the maximum profit is shown in Table 12 after shifting the allocation to the original problem.

Ma-	Products										Capaci-		
chines	P ₁		P ₂		P ₃		P ₄		P ₅		P ₆		tv
M ₁		35	225	41	95	28		16		20		12	320
M ₂		14		21		28	180	30		15		24	180
M ₃	200	45		18		17		29		26		19	200
M_4		21		23	25	16		11	275	22		20	300
M 5	25	41		16	80	15	20	17		21	175	28	300
Demand	225 225		200		200		275		175				
Table 12. Allocation table and allocation in the various cells.													

• Finally, maximum profit according to allocation table method is, (225x41+95x28+180x30+200x45+25x16+275x22+25x41+80x15+20x17+175x28) =40200

Results and Discussion

To analyze the performance of allocation table method, various problems have been solved and a comparative study also was carried out among the results obtained by various methods including the ATM, which is shown in Table 13 given below.

	Total Profit								
Method	Ex. 1	E	Ex. 3	Ex. 4					
North West Corner Method	<mark>1290</mark>	5	<mark>137</mark>	<mark>3237</mark>					
Least Cost Method	<mark>2810</mark>	8	<mark>232</mark>	<mark>4020</mark>					
Vogel's Approximation	<mark>2930</mark>	8	<mark>232</mark>	<mark>4020</mark>					
Extremum Difference Method	<mark>2930</mark>	8	<mark>232</mark>	<mark>4020</mark>					
Proposed Approach (ATM)	<mark>2930</mark>	8	<mark>232</mark>	<mark>4020</mark>					
Optimum Solution	<mark>2930</mark>	8	<mark>232</mark>	<mark>4036</mark>					
Table 13. Results obtained by various methods.									

From the above Table 13 it is observed that the allocation table method yields results which are also effective to solve transportation problem.

CONCLUSION

Obtaining an initial feasible solution is the prime condition to find the optimal solution for a transportation problem. There is no unique method which can be claimed as the best solution procedure to obtain optimal solution for transportation problems. But the efficiency and effectiveness of the initial feasible solution finding procedure depends on few factors, like, the procedure is complicated or not, initial feasible solution is nearer to optimal or not, is it time consuming or not etc. Considering all these factors, the allocation method can be used to find the initial basic feasible solution of the maximization transportation problems as like as the other traditional methods.

REFERENCES

[1] F.L. Hitchcock, "The distribution of a Product from Several Sources to Numerous Localities", *Journal of Mathematics and Physics*, vol. 20, pp. 224-230, 1941.

[2] G.B. Dantzig, Application of the Simplex Method to a Transportation Problem, Activity Analysis of Production and Allocation, (T.C. Koopmans ed), New York: John Wiley and Sons, pp. 359-373, 1951.

[3] A. Charnes, W.W. Cooper and A. Henderson, *An Introduction to Linear Programming*, John Wiley & Sons, New York, 1953.

[4] Hamdy, A. Taha, *Operations Research: An Introduction*, 8th Edition, Pearson Prentice Hall, Upper Saddle River, New Jersey 07458, pp. 193-221, 2007.

[5] H.S. Kasana and K.D. Kumar, *Introductory Operations Research: Theory and Applications*, Springer International Edition, New Delhi, pp. 221-243, 2005.

[6] Aminur Rahman Khan, Adrian Vilcu, Nahid Sultana and Syed Sabbir Ahmed, "Determination of Initial Basic Feasible Solution of a Transportation Problem: A TOCM-SUM Approach", *Buletinul Institutului Politehnic Din Iasi, Romania, Secția Automatica si Calculatoare*, Tomul LXI (LXV), Fasc. 1, pp. 39-49, 2015.

[7] Aminur Rahman Khan, Adrian Vilcu, Md. Sharif Uddin and Florina Ungureanu, "A Competent Algorithm to find the initial Basic Feasible Solution of Cost Minimization Transportation Problem", *Buletinul Institutului Politehnic Din Iasi, Romania, Secția Automatica si Calculatoare*, Tomul LXI (LXV), Fasc. 2, pp. 71-83, 2015.

[8] Mollah Mesbahuddin Ahmed, Aminur Rahman Khan, Md. Sharif Uddin and Faruque Ahmed, "A New Approach to Solve Transportation Problems", *Open Journal of Optimization*, vol. 5, no. 1, pp. 22-30, 2016.

[9] Md. Amirul Islam, M. Sharif Uddin, S. M. Mahmudul Hasan, Farhana Rashid and M. Abdul Malek, "Profit Maximization of a Manufacturing Company: An Algorithmic

Approach", Jahangirnagar Journal of Mathematics & Mathematical Sciences, vol. 28, pp. 29-37, 2013.

[10] M.M. Ahmed, Islam, Md.A., Katun, M., Yesmin, S. and Uddin, Md.S., "New Procedure of Finding an Initial Basic Feasible Solution of the Time Minimizing Transportation Problems", *Open Journal of Applied Sciences*, vol. 5, pp. 634-640, 2015.

CONTACT ADDRESSES

Dr. Md. Sharif Uddin, M. Nazrul Islam, Aminur Rahman Khan Department of Mathematics Jahangirnagar University Savar, Dhaka-1342, Bangladesh Phone: +8801726452777 E-mail: msharifju@yahoo.com; www.omrg.education

Assistant prof. PhD Iliyana Raeva Department of Applied Mathematics an and Statistics Angel Kanchev University of Ruse 8, Studentska Str. 7017 Ruse,BULGARIA Phone: (+359 82) 888 606 E-mail: <u>iraeva@uni-ruse.bg</u>

ЕФЕКТИВНОСТ НА ТАБЛИЧНИЯ МЕТОД НА РАЗПРЕДЕЛЕНИЕ ЗА РЕШАВАНЕ НА МАКСИМИЗАЦИОННАТА ТРАНСПОРТНА ЗАДАЧА

Md Sharif Uddin^{1,2}, M. Nazrul Islam¹, Илияна Раева², Aminur Rahman Khan¹

Jahangirnagar University, Русенски университет "Ангел Кънчев"

Резюме: Проблемът за максимизиране на транспортните разходи може да бъде решен чрез традиционните алгоритми. В настоящия доклад е използван нов табличен метод за разпределение (Allocation Table Method – ATM) при решаване на транспортната максимизационна задача. Изследвана е и е доказана ефективността на ATM за решаване на максимизационната транспортна задача.

Ключови думи: Разпределяне на стойност на клетка, Табличен метод на разпределение, Максимизационна задача, Оптимално решение, Транспортна задача.

48

